Stereoselective construction of vicinal diamines. Part 3. ${ }^{1}$ R outes to the benz[f]indeno[1,7-bc]azepine and benz[e]indeno[2,1-b][1,4] diazepine ring systems

Barry S. O rlek* and E leanor A. C rowe

SmithK line B eecham P harmaceuticals, N ew Frontiers Science Park, Third Avenue, H arlow, Essex, UK CM 19 5AW

The trans-1-anilino-2-aminoindane derivative 2a derived from the adduct 1 of indene and N, N-dichlorourethane is suitably functionalised for further elaboration to give novel fused ring systems. This report describes the use of $2 a$ to provide access to the benz[f]indeno[1,7-bc]azepines 4a,b and the benz[e]indeno[2,1-b][1,4]diazepines $5 a, b$. F urther elaboration of $4 a$ affords a route to the diazabenzo[5,6]cyclohepta[def]fluorene 9 .

Vicinal diamine functionality is present in a variety of biologically active molecules. ${ }^{2}$ In previous reports ${ }^{3,4}$ we described a stereoselective synthesis of trans-1-anilino-2-aminoindane derivatives which relied on the reaction of an appropriate aniline with the trans adduct $\mathbf{1}^{5}$ derived from indene and N, N-dichlorourethane (Scheme 1). \dagger For example, the 2

Scheme 1 Reagents and conditions: i, 2-aminobenzyl alcohol, BaCO_{3} DM F, $85^{\circ} \mathrm{C}$; ii, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$; iii, 2-aminobenzyl alcohol, tolu ene, toluene-p-sulfonic acid, $45-50^{\circ} \mathrm{C}$
hydroxymethylanilino derivative 2a was obtained in moderate yield (51%) from the reaction of 1 with 2 -aminobenzyl alcohol in the presence of barium carbonate. In addition, it was shown that the reaction proceeds via an oxazolinium species. This observation provides the basis for an alternative procedure, since the dihydrooxazole $\mathbf{3}$ can be generated from 1 in near quantitative yield under mild basic conditions, and then alkylated with a suitably substituted aniline employing acid catalysis. U sing this protocol $\mathbf{2 a}$ can be prepared from $\mathbf{3}$ in 60% yield. The carbamate 2a is suitably functionalised for further elaboration to give fused ring systems. This report describes the use of this key intermediate to provide access to the novel benz[f]indeno-[1,7-bc]azepine and benz[e]indeno[2,1-b][1,4]diazepine ring systems.

Cyclisation of 2a with methanesulfonic acid and phosphorus pentoxide ${ }^{6}$ afforded two products (Scheme 2) which were readily separable by chromatography on silica gel. The lower R_{f} component was identified as the benz[f]indeno[$1,7-b c] a z e p i n e$

[^0]

Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{M} \mathrm{eSO} 3_{3} \mathrm{H}-\mathrm{P}_{2} \mathrm{O}_{5} ; \mathrm{ii}, \mathrm{PPh}_{3}, \mathrm{CBr}_{4}$, room temperature; $\mathrm{iii}, \mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$

4a which arises from the anticipated intramolecular FriedelCrafts alkylation reaction. The higher R_{f} component was found to be the benz[e]indeno[2,1-b][1,4]diazepine 5 a which presumably results from a competing pathway involving capture of the benzylic carbocation intermediate by the carbamate nitrogen. Theratio of the two products was found to be dependent on the reaction temperature At room temperature the reaction proceeded slowly, requiring up to 7 days to reach completion, and the benz[f]indeno[1,7-bc]azepine 4a was the predominant product. I solated yields of $\mathbf{4 a}$ and 5 a were 24 and 17% respectively. Increasing the reaction temperature to $65{ }^{\circ} \mathrm{C}$ resulted in complete reaction after 1 h . However, under these conditions the product ratio was reversed. The benz[e]indeno $[2,1-b][1,4]-$ diazepine 5 a was isolated as the major product (31% yield) together with a lower yield (17\%) of the benz[f]indeno[1,7-bc]azepine 4 a.
The structure of 5 a was confirmed by ${ }^{1} \mathrm{H} N M R$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy in $\left[{ }^{2} \mathrm{H}\right]_{6} \mathrm{DMSO}$ solution. The ${ }^{1} \mathrm{H} N M R$ spectrum (Table 1) was fully assigned on the basis of COSY 45 and heteronuclear multiple quantum coherence (HMQC) experiments. All experiments were acquired on a Bruker A M X 400 spectrometer. A series of one-dimensional N OE difference

Table $1^{1}{ }^{1} \mathrm{H}$ NMR spectroscopic data for diazepine $\mathbf{5} \mathbf{a}^{\mathrm{a}}$ relative to TM S at 0.00 ppm

A ssignments	$\delta(\mathrm{ppm})$	M ultiplicity (J $\pm 0.4 \mathrm{~Hz}$)
CH_{3}	1.19	$\left.\mathrm{t}^{(3)}=7.1\right)$
12ax-H	2.81	dd ($\left.\left.{ }^{2}\right)_{12 a x-12 e q}=14.6,{ }^{3}{ }_{12 a x-11 a}=10.5\right)$
12eq-H	3.31	$\mathrm{dd}\left({ }^{2}{ }^{\mathrm{J} 2 \mathrm{eq}-12 \mathrm{ax}}=14.6,{ }^{3} \mathrm{~J} 12 \mathrm{eq}-11 \mathrm{a}=6.7\right)$
OCH_{2}	4.06	m
11a-H	4.15	$\begin{aligned} & \text { ddd }\left({ }^{3}\right)_{11 a-12 a x}=10.5,{ }^{3} \int_{11 a-12 e q}=6.7, \\ & \left.\left.{ }^{3}\right]_{11 a-4 b}=10.5\right) \end{aligned}$
10eq-H	4.55	$\left.\mathrm{d}\left({ }^{2}\right] 10 \mathrm{eq}-10 \mathrm{ax}=15.5\right)$
10ax-H	5.28	d (${ }^{2}{ }_{3} 10 \mathrm{eqx}-10 \mathrm{eq}=15.5$)
4b-H	5.69	$\left.d(3)_{4 b-11 a}=10.5\right)$
N 5-H	6.16	$\mathrm{d}\left({ }^{3}\right)^{(5-4 b}$ = 4.2)
C8-H	6.53	ddd ($\left.\left.\left.{ }^{(3)}{ }_{8-9}=7.5,{ }^{3}\right)_{8-7}=7.5,{ }^{4}\right)_{8-6}=1.3\right)$
C6-H	6.82	$\left.\mathrm{dd}\left({ }^{3}\right)_{6-7}=7.9,{ }^{4} \mathrm{~J}_{6-8}=1.3\right)$
$\mathrm{C} 9-\mathrm{H}$	6.90	dd ($\left.\left.{ }^{3} /{ }_{9.8}=7.5,{ }^{4}\right)_{9-7}=1.3\right)$
C7-H	7.00	ddd ($\left.{ }^{3} \mathrm{~J}_{7-6}=7.9,{ }^{3} \mathrm{~J}_{7-8}=7.5,{ }^{4} \mathrm{~J}_{7-9}=1.3\right)$
$\begin{aligned} & \mathrm{C} 1-\mathrm{H}, \mathrm{C} 2-\mathrm{H}, \\ & \mathrm{C} 3-\mathrm{H} \end{aligned}$	7.24-7.32	m
C4-H	7.53	$d\left(3^{4.3}{ }^{\text {a }}=6.7\right)$

a 400 M Hz spectrum in $\left[^{2} \mathrm{H}\right]_{6} \mathrm{D} M \mathrm{SO}$.

major conformer

minor conformer

Fig. 1 Conformers of $\mathbf{5 a}$ showing nuclear Overhauser enhancements
experiments produced several large positive enhancements which revealed the conformation of 5 a. A number of small negative enhancements were also observed due to indirect NOEs arising from three-spin systems, ${ }^{7}$ and these provided valuable additional information. Irradiation of $4 \mathrm{~b}-\mathrm{H}$ produced a large N OE at the $10-\mathrm{H}$ proton at $\delta 5.28(10 \mathrm{ax}-\mathrm{H})$, with a threespin effect at the $10-\mathrm{H}$ proton at $\delta 4.55(10 \mathrm{eq}-\mathrm{H})$. This suggests that $4 \mathrm{~b}-\mathrm{H}$ and the $10-\mathrm{H}$ proton at $\delta 5.28$ (10ax-H) adopt a pseudo-axial orientation which brings them into close proximity. I Iradiation of $10 \mathrm{ax}-\mathrm{H}$ at $\delta 5.28$ produced a large $\mathrm{N} O \mathrm{E}$ at 4 b H as well as at $10-\mathrm{H}$ at $\delta 4.55(10 \mathrm{eq}-\mathrm{H})$. The N OE at $10-\mathrm{H}$ at $\delta 4.55(10 \mathrm{eq}-\mathrm{H})$ gave rise to a three-spin effect at the aromatic doublet corresponding to $9-\mathrm{H}$. Irradiation of $10-\mathrm{H}$ at $\delta 4.55$ (10eq-H) gave large enhancements at $9-\mathrm{H}$ (with a negative enhancement at $8-\mathrm{H}$) and at $10 \mathrm{ax}-\mathrm{H}$ (with a negative enhancement at $4 \mathrm{~b}-\mathrm{H}$). These data are consistent with the $10-\mathrm{H}$ at $\delta 4.55$ lying in the same plane as $9-\mathrm{H}$, that is pseudo-equatorially. When $9-\mathrm{H}$ was irradiated, large N OEs at $8-\mathrm{H}$ and 10eq-H were observed with a three-spin effect negative enhancement at 10axH . These results all indicate that the diazepine ring favours a distorted boat-like conformation (Fig. 1), where $4 \mathrm{~b}-\mathrm{H}$ and 10ax-H adopt a syn-orientation. Some of the N OE data pointed to contributions from a minor conformer (Fig. 1). Irradiation of the $10-\mathrm{H}$ signal at $\delta 4.55$ produced a small NOE at 12ax-H which is consistent with flipping of the diazepine ring into a chair-like conformation. The reverse NOE was also observed.

Further experiments provided confirmation of the relative
orientation of 12ax-H and $4 \mathrm{~b}-\mathrm{H}$. I rradiation of the $12-\mathrm{H}$ signal at $\delta 2.81(12 \mathrm{ax}-\mathrm{H})$ gave a large N OE at $4 \mathrm{~b}-\mathrm{H}$, showing that these two protons are cis and pseudo-axial. Proton 4b-H also gave an NOE at the $12-\mathrm{H}$ proton at $\delta 2.81$ ($12 \mathrm{ax}-\mathrm{H}$). When $12-\mathrm{H}$ at δ 3.31 (12eq-H) was irradiated, an N OE was observed at 12ax-H, but not at $4 \mathrm{~b}-\mathrm{H}$, showing that the irradiated proton is pseudoequatorial and cis to $12 \mathrm{a}-\mathrm{H}$. Proton 12ax-H also gave an NOE at $12 \mathrm{eq}-\mathrm{H}$. These results are consistent with a trans relationship between 12ax-H and 4b-H.

Reduction of 4 a and 5 a with lithium aluminium hydride afforded the N -methylamines $\mathbf{4 b}$ and $\mathbf{5 b}$ respectively. Cyclisation of the diamine $\mathbf{2 b}$, obtained by reduction of $\mathbf{2 a}$ with lithium aluminium hydride, ${ }^{4}$ was examined under two different sets of conditions in order to explore the scope for achieving more selective routes to $\mathbf{4 b}$ and $\mathbf{5} \mathbf{b}$. Treatment of $\mathbf{1 b}$ with methanesulfonic acid and phosphorus pentoxide afforded the benz[f]indeno[1,7-bc]azepine 4b in low yield (11\%). U se of triphenyl phosphine-carbon tetrabromide ${ }^{8}$ to activate the benzylic hydroxy group to attack from the methylamino group afforded the benz[e]indeno[2,1-b][1,4]diazepine 5 b, but the yield was disappointingly low.
Elaboration of 4a by incorporation of the vicinal diamine functionality into a piperazine ring provided access to the diazabenzo[5,6]cyclohepta[def ffluorene ring system (Scheme 3). The piperazine ring was constructed by acylation of the

Scheme 3 Reagents and conditions: i, $\mathrm{BrCH}_{2} \mathrm{COCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, ii, $\mathrm{NaH}, \mathrm{DMF}$; iii, diborane, THF; iv, LiAIH 4, THF
anilinic nitrogen of 4 a with α-bromoacetyl bromide to give 6 which cyclised readily using sodium hydride in N,Ndimethylformamide to afford the lactam 7. Reduction of the lactam carbonyl with diborane followed by treatment with lithium aluminium hydride afforded 9. This approach complements the route described in an earlier report ${ }^{4}$ where formation of the piperazine ring was effected prior to intramolecular cyclisation to form the azepine ring. Spectral data recorded for 9 were identical to those reported previously.

In summary, this study demonstrates the versatility of the N, N-dichlorourethane based methodology for the construction of complex fused ring systems incorporating vicinal diamine functionality. U se of this approach provides rapid access to the benz[f]indeno[1,7 -bc]azepine 4 a and the benz[e]indeno[2,1-b][1,4]diazepine 5a while further elaboration leads to the diazabenzo[5,6]cyclohepta[def]fluorene ring system. The structure of 5 a was confirmed by NMR studies which suggest that the diazepine ring favours a distorted boat-like conformation.

Experimental

M elting points were obtained on a K ofler hot stage apparatus
and are uncorrected. N M R spectra were recorded on a Varian CFT-20, a JEOL GX-270, a Bruker WM-250 or a Bruker AMX-400 spectrometer using tetramethylsilane as internal standard. J Values are given in Hz . M ass spectra were obtained on an AEI M S9 (70 eV) or a JEOL DX303 (70 eV) spectrometer and infra-red spectra on a Perkin-Elmer 197 spectrometer. All evaporations of solvent were carried out under reduced pressure, and organic solutions were dried over sodium sulfate. Silica gel used for column chromatography was M erck K ieselgel 60 . Standard work-up for lithium aluminium hydride reductions involved quenching with wet diethyl ether followed by water and then filtration to remove precipitated aluminium salts. Light petroleum refers to the fraction with bp $60-80^{\circ} \mathrm{C}$. Ether refers to diethyl ether.

(1R*,2R*)-2-E thoxycarbonylamino-1-(2-hydroxymethylanilino)-

 indane 2 aA mixture of cis-2-ethoxy-4,8b-dihydro-3aH-indeno[2,1-d]oxazole $3^{4}(1.0 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 2-aminobenzyl alcohol (0.615 $\mathrm{g}, 5.0 \mathrm{mmol}$) in dry toluene ($20 \mathrm{~cm}^{3}$) containing toluene-psulfonic acid ($5 \mathrm{~cm}^{3}$ of an anhydrous 0.1 m solution in benzene prepared by azeotropic distillation) was heated under argon at $45-50^{\circ} \mathrm{C}$ for 1.5 h . The reaction was diluted with ethyl acetate and washed with water followed by brine. The dried organic layer was concentrated to give a foam. Purification by column chromatography on silica gel using light petroleum-ethyl acetate ($3: 1$) as eluent afforded $2 \mathrm{a}(0.98 \mathrm{~g}, 60 \%$). Spectral characteristics were identical to those reported previously. ${ }^{4}$
($5 R^{*}, 5 a R^{*}$)-5-E thox ycarbonylamino-5,5a,6,11-tetrahydro-4H benz[f]indeno[1,7-bc]azepine 4a and (4bR *,11aR*)-11-ethoxy-carbonyl-4b,5,10,11,11a,12-hexahydrobenz[e]indeno[2,1-b]

[1,4]diazepine 5a

Cyclisation of 2a at room temperature. A solution of alcohol 2a ($5.4 \mathrm{~g}, 0.0166 \mathrm{~mol}$) in methanesulfonic acid ($37 \mathrm{~cm}^{3}$) was treated with phosphorous pentoxide (10.8 g) and stirred at room temperature for 7 days. The reaction mixture was poured onto ice, basified with dilute aqueous sodium hydroxide and extracted into ether. The dried extracts were concentrated to give a brown foam (5.8 g). TLC on silica using light petroleumethyl acetate ($3: 1$) as eluent indicated two mobile products ($\mathrm{R}_{\mathrm{f}}=0.77$ and 0.6). Purification by chromatography on silica gel using light petroleum-ethyl acetate (4:1) afforded the minor faster running component 5a as a crystalline solid (0.88 g , $17 \%) ; \mathrm{mp} 138-140^{\circ} \mathrm{C}$ (from light petroleum-ethyl acetate) (Found: C, 74.0; H, 6.7; N, 9.1\%. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 74.0; $\mathrm{H}, 6.5 ; \mathrm{N}, 9.1 \%) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1680(\mathrm{C}=0)$; $\delta_{\mathrm{c}}(100$ M Hz; [${ }^{2} \mathrm{H}$] D^{D} M SO) 14.4 (CH_{3}), 35.7 (12-C), 48.1 (10-C), 60.0 (4b-C), $60.7\left(\mathrm{OCH}_{2}\right), 69.4$ (11a-C), 116.7, 116.9, 122.0, 122.3 (4-C), 124.7, 126.4, 127.4, 128.1, 131.0 (9-C), 138.7, 140.3, 146.8, 155.6; m/z 308 (${ }^{+}$, 16\%), 220 (18), 219 (86), 218 (100), 206 (11), 130 (13), 106 (18). The major slower running component 4a was obtained as a pale brown crystalline solid (1.2 g , 24%); mp 94-98 ${ }^{\circ} \mathrm{C}$ (from pentane-ether) (Found: C, $74.2 ; \mathrm{H}$, $6.5 ; \mathrm{N}, 9.1 \% . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.0 ; \mathrm{H}, 6.5 ; \mathrm{N}, 9.1 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3280$ and $3250(\mathrm{NH}), 1690(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right) 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 2.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2$ and 10, 4-H), 3.19 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2$ and 8, 4-H), 3.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.4$, $11-\mathrm{H}), 4.15$ ($4 \mathrm{H}, \mathrm{m}$, overlapping signals), 4.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,5 \mathrm{a}-$ H), 5.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6$, exchanges with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$), 6.70-7.30 ($7 \mathrm{H}, \mathrm{m}$, aromatic); $\delta_{\mathrm{c}}\left(20 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 14.61,36.14,38.69$, 60.16, 61.32, 68.25, 120.29, 120.53, 122.40, 125.64, 127.46, 127.98, 128.12, 129.49, 137.70, 138.22, 138.47, 145.93, 157.36; m/z 308 ($\mathrm{M}^{+}, 8 \%$), 220 (15), 219 (100), 218 (68), 217 (14).

Cyclisation of 2a at $65{ }^{\circ} \mathrm{C}$. A solution of alcohol $2 \mathrm{a}(3.31 \mathrm{~g}$, 0.01 mol) in methanesulfonic acid ($45 \mathrm{~cm}^{3}$) was treated with phosphorous pentoxide (6.6 g) and heated at $65^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured onto ice, basified with dilute aqueous sodium hydroxide and extracted into ether. The dried extracts were concentrated to give a foam (1.2 g). Purification by
chromatography on silica gel using light petroleum-ethyl acetate ($6: 1$) afforded $5 \mathrm{a}(0.95 \mathrm{~g}, 31 \%)$ and $\mathbf{4 a}(0.51 \mathrm{~g}, 17 \%)$.

(5R*,5aR *)-5-M ethylamino-5,5a,6,11-tetrahydro-4H -benz[f]indeno $[1,7$-bc]azepine 4b
 M ethod A: reduction of 4a. A solution of $4 \mathrm{a}(1.17 \mathrm{~g}, 3.76$

 mmol) in dry tetrahydrofuran ($20 \mathrm{~cm}^{3}$) was added to a stirred suspension of lithium aluminium hydride ($0.42 \mathrm{~g}, 11.0 \mathrm{mmol}$) in dry tetrahydrofuran ($20 \mathrm{~cm}^{3}$) under nitrogen. The mixture was refluxed for 1 h . Standard work-up afforded a dark oil (0.80 g , $85 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3320(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(80 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}_{3}\right) 2.20-$ 2.75 ($5 \mathrm{H}, \mathrm{m}$, overlapping signals), $3.00-3.45$ ($2 \mathrm{H}, \mathrm{m}$, overlapping signals), 3.75 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,11-\mathrm{H}$), 4.30 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15,11-\mathrm{H}$), 4.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,5 \mathrm{a}-\mathrm{H}$), 6.65-7.30 (7H, m, aromatic); $\delta_{\mathrm{c}}(20$ M Hz; CDCl ${ }_{3}$) $34.16,35.78,38.60,65.76,69.38,119.73,120.29$, 122.50, 125.00, 127.14, 127.42, 129.57, 130.99, 136.41, 138.85, 139.20, 146.32. M aleate salt $\mathrm{mp} 182-184^{\circ} \mathrm{C}$ (from acetoneether) (Found: C, 68.5, H, 6.1; $\mathrm{N}, 7.5 \% . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C , 68.8, H , 6.05, N, 7.6\%).M ethod B: cyclisation of $\mathbf{2 b}$. A solution of alcohol $\mathbf{2 b}$ (0.1 g , 0.37 mmol) in methanesulfonic acid ($1 \mathrm{~cm}^{3}$) was treated with phosphorous pentoxide (0.2 g) and the mixture was heated at $40^{\circ} \mathrm{C}$ for 2 h and then at $60^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was poured onto ice, neutralised with dilute aqueous sodium hydroxide and then extracted into dichloromethane. Concentration of the dried extracts afforded an oil (80 mg) which was purified by preparative thin layer chromatography using toluene-ethyl acetate-methanol $3: 1: 1$ as eluent to give $\mathbf{4 b}$ (10 $\mathrm{mg}, 11 \%$) identical by ${ }^{1} \mathrm{H}$ NMR to the product obtained in M ethod A; m/z 250 (${ }^{+}$, 100\%), 249 (30), 235 (15), 220 (28), 219 (59), 218 (70), 194 (80), 193 (20), 191 (12) (Found: M ${ }^{+}$, 250.1473. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires $\mathrm{M}, 250.1470$).

(4bR *,11aR*)-11-M ethyl-4b,5,10,11,11a,12-hex ahydrobenz[e] indeno[2,1-b][1,4]diazepine 5b
 M ethod A: reduction of 5a. A solution of carbamate $\mathbf{5 a}$ (0.81

 $\mathrm{g}, 2.63 \mathrm{mmol}$) in dry tetrahydrofuran ($15 \mathrm{~cm}^{3}$) was added to a suspension of lithium aluminium hydride ($0.3 \mathrm{~g}, 7.89 \mathrm{mmol}$) in tetrahydrofuran ($5 \mathrm{~cm}^{3}$) stirred under nitrogen. The mixture was heated under reflux for 75 min . A fter standard work-up the crude oil (0.71 g) was purified by chromatography on silica gel using a graded eluent of $40-50 \%$ ethyl acetate in light petroleum to give diamine 5b ($0.44 \mathrm{~g}, 67 \%$); $\mathrm{mp} 83-85^{\circ} \mathrm{C}$ (from pentane-ether) (Found: C, 81.2, H, 7.3, N, 11.3\%. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires C, 81.6, H, 7.25, N, 11.2\%); m/z 250 (${ }^{+}, 22 \%$), 249 (10), 218 (22), 206 (21), 144 (17), 134 (100), 133 (17) (Found: $\mathrm{M}^{+}, 250.1455 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires $\mathrm{M}, 250.1470$). NMR data were identical to those recorded in M ethod B.M ethod B: cyclisation of $\mathbf{2 b}$. To a solution of amino alcohol 2b ($0.54 \mathrm{~g}, 2.0 \mathrm{mmol}$) and triphenylphosphine ($1.05 \mathrm{~g}, 4.0$ mmol) in dry acetonitrile ($125 \mathrm{~cm}^{3}$) under argon was added carbon tetrabromide ($1.33 \mathrm{~g}, 4.0 \mathrm{mmol}$) and the mixture was stirred at room temperature for 20 h . The reaction was evaporated to dryness and the residue was partitioned between aqueous sodium hydroxide ($100 \mathrm{~cm}^{3}$ of a 2.5 m solution) and chloroform ($100 \mathrm{~cm}^{3}$). The organic layer was washed with brine then dried and concentrated. The residue was extracted into ether and insolubles were removed by filtration. The filtrate was treated with ethereal hydrogen chloride. The hydrochloride salt was isolated following centrifugation and then partitioned between ether and saturated aqueous sodium hydrogen carbonate. The aqueous layer was further extracted with ether and the combined ethereal extracts were dried and concentrated. Chromatography on silica gel using a gradient eluent of $10-$ 50% ethyl acetate in light petroleum afforded $\mathbf{5 b}$ ($40 \mathrm{mg}, 8 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 10.5, 12-H), 3.05 (1H, m, 11a-H), 3.15 (1H, dd, J 14 and 7, 12H), 3.61 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14,10-\mathrm{H}$), 4.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14,10-\mathrm{H}$), 4.42 (1 H , d, J 8.6, 4b-H), 6.85 ($2 \mathrm{H}, \mathrm{m}$, aromatic), 7.15 ($2 \mathrm{H}, \mathrm{m}$, aromatic), $7.26\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic); $\delta_{\mathrm{c}}\left(60 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 35.61,41.52,62.80$,
63.94, 76.96, 117.97, 120.35, 121.23, 125.03, 125.97, 126.72, 127.63, 128.29, 132.02, 139.30, 141.90, 148.69.
($5 \mathrm{R}^{*}, 5 \mathrm{aR} *$)-5-E thox ycarbonylamino-6-bromoacetyl-5,5a,6,11-tetrahydro-4H -benz[f]indeno[1,7-bc]azepine 6
A solution of $4 \mathrm{a}(3.08 \mathrm{~g}, 0.01 \mathrm{~mol})$ in dry dichloromethane (25 cm^{3}) containing potassium carbonate ($2.76 \mathrm{~g}, 0.02 \mathrm{~mol}$) was cooled in ice and treated with bromoacetyl bromide ($0.88 \mathrm{~cm}^{3}$, $0.01 \mathrm{~mol})$. The reaction was stirred at room temperature for 27 h , and during this period a further portion ($0.2 \mathrm{~cm}^{3}$) of bromoacetyl bromide was added. The mixture was diluted with water and the aqueous phase was further extracted with dichloromethane. The combined organic layers were washed with water, dried and concentrated. Trituration with pentane-ether afforded 6 (4.1 g, 95\%); mp 207.5-210 ${ }^{\circ} \mathrm{C}$ (from ether); $\left.v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1710(\mathrm{C}=0), 1665(\mathrm{C}=0)\right)$; $\delta_{\mathrm{H}}(80$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.33\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and 10 , $4-\mathrm{H}$), 3.32 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15$ and $8,4-\mathrm{H}$), 3.44 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13,11-\mathrm{H}$), $3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$, 3.9-4.7 (4 H , m, overlapping signals, $5-\mathrm{H}$ $11-\mathrm{H}$ and $\left.\mathrm{OCH}_{2}\right), 6.1(2 \mathrm{H}$, overlapping doublets, $5 \mathrm{a}-\mathrm{H}$ and NH), 6.8-7.5 (7H, m, aromatic); $\delta_{\mathrm{c}}\left(20 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.60$ $27.25,36.56,37.08,58.65,60.84,63.58,123.39,125.44,127.84$ 128.23, 128.67, 129.31, 130.09, 135.21, 135.37, 137.26, 139.82 142.42, 156.95, 168.41; m/z 428, 430 (${ }^{+}$, $<5 \%$), 341 (34), 339 (36), 307 (16), 261 (50), 260 (100), 233 (15), 219 (22), 218 (62), 217 (24), 132 (20) (Found: M^{+}, 428.0760. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}$ requires M , 428.0734).

(4aR *,12cR*)-5-E thoxycarbonyl-7-oxo-4a, 5,6,7,12,12c-hexahydro-4H -5,7a-diazabenzo[5,6]cyclohepta[def]fluorene 7

A solution of 6 ($3.35 \mathrm{~g}, 7.8 \mathrm{mmol}$) in dry N, N-dimethylformamide ($200 \mathrm{~cm}^{3}$) was added over 30 min to an ice cooled suspension of sodium hydride (0.26 g of an 80% dispersion in oil, 8.6 mmol) in N, N-dimethylformamide ($20 \mathrm{~cm}^{3}$) stirred under nitrogen. A fter a further 3 h at room temperature the reaction was diluted with water and extracted into ether. The extract was washed with water, dried and concentrated to give $7(2.35 \mathrm{~g}, 90 \%) ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1700(\mathrm{C}=0), 1680(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(80 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16$ and $10,4-\mathrm{H}$), 3.35-4.5 ($7 \mathrm{H}, \mathrm{m}$, overlapping signals), 4.86 (1 H , d, J 16, 12-H), 5.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11,12 \mathrm{c}$), 6.80-7.40 ($6 \mathrm{H}, \mathrm{m}$, aromatic), 7.6 (1 H , m, aromatic); m/z 349 (16), 348 (${ }^{+}$, 55\%), 319 (16), 247 (16), 220 (40), 219 (100), 218 (85), 132 (18) (Found: M^{+}, 348.1448. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{M}, 348.1474$).
cm^{3}) was added dropwise to diborane ($10.5 \mathrm{~cm}^{3}$ of a 1 m solution in tetrahydrofuran) cooled to ice temperature under nitrogen, and the mixture was heated under reflux for 2 h . The reaction was cooled to $-10^{\circ} \mathrm{C}$ and acidified with 5 m aq. HCl . A fter stirring for 30 min the solvent was evaporated and the residue was basified with 2 m aq. NaOH before extraction into ether. The dried extract was concentrated and purified on silica gel using light petroleum-ethyl acetate ($85: 15$) as eluent to give 8 as a foam ($1.45 \mathrm{~g}, 70 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1690$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}(250$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.90-3.68(6 \mathrm{H}, \mathrm{m}$, overlapping signals), $3.80-4.26$ (4 H , m, overlapping signals), 4.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14,12-\mathrm{H}$), 4.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,12 \mathrm{c}-\mathrm{H}$), 6.75-7.20 ($7 \mathrm{H}, \mathrm{m}$, aromatic); m/z 334 ($\mathrm{M}^{+}, 34 \%$), 333 (26), 259 (32), 233 (22), 232 (70), 220 (67), 219 (100), 218 (32), 204 (15) (Found: $\mathrm{M}^{+}, 334.1683 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M , 334.1679).

(4aR*,12cR*)-5-M ethyl-4a,5,6,7,12,12c-hexahydro-4H -5,7adiazabenzo[5,6]cyclohepta[def]fluorene 9

A solution of 8 ($1.4 \mathrm{~g}, 4.0 \mathrm{mmol}$) in dry tetrahydrofuran (10 cm^{3}) was added dropwise to a stirred suspension of lithium aluminium hydride ($0.45 \mathrm{~g}, 12.0 \mathrm{mmol}$) in tetrahydrofuran (4 cm^{3}) under nitrogen and the mixture was heated at reflux for 50 min . Standard work-up afforded 9 ($0.98 \mathrm{~g}, 89 \%$); mp 151$152^{\circ} \mathrm{C}$ (from pentane-ethyl acetate). M aleate salt mp 183$185^{\circ} \mathrm{C}$ (from acetone-ether) (Found: C, 70.3; H, 6.25; N, 7.0\%. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 7.1 \%$). Spectral data were identical to those reported previously. ${ }^{4}$

R eferences

1 Part 2, B. S. Orlek and D. Lightowler, J. Chem. Soc., Perkin Trans. 1, 1993, 1307.
2 E. T. M ichalson and J. Smuszkovicz, P rog. Drug Res., 1989, 33, 135.
3 B. S. Orlek, Tetrahedron L ett., 1986, 1699
4 B. S. Orlek, G. T. Borrett and D. M. Smith, J. Chem. Soc., Perkin Trans. 1, 1993, 1299.
5 B. J. Walker and P. F. Wrobel, J. Chem. Soc., Chem. Commun., 1980, 462.

6 (a) P. E. Eaton, G. R. Carlson and J. T. Lee, J. Org. Chem., 1973, 35, 4071; (b) B. W. A xon, B. R. D avis and P. D. Woodgate, J. Chem. Soc., Perkin Trans. 1, 1981, 2956.
7 D. Neuhaus and M. Williamson, The Nuclear Overhauser Effect in Structural and C onformational A nalysis, VCH, Weinheim, 1989, p. 81.
8 R . Y amaguchi, Y. N akazono, T. M atsuki, E. H ata and M . K awanisi, Bull. Chem. Soc. J pn., 1987, 60, 215.
(4aR *,12cR *)-5-E thoxycarbonyl-4a,5,6,7,12,12c-hexahydro4H -5,7a-diazabenzo[5,6]cyclohepta[def]fluorene 8
A solution of $7(2.2 \mathrm{~g}, 6.3 \mathrm{mmol})$ in dry tetrahydrofuran (15

Paper 701762F
Received 13th M arch 1997
A ccepted 29th A pril 1997

[^0]: † For convenience only one enantiomer is shown in diagrams.

